Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 46(9): 780-788, 19/set. 2013. graf
Article in English | LILACS | ID: lil-686573

ABSTRACT

4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.


Subject(s)
Humans , Antioxidants/pharmacology , Catechols/pharmacology , Erythrocyte Membrane/drug effects , Peroxides/analysis , Phospholipids/pharmacology , alpha-Tocopherol/pharmacology , Amidines/administration & dosage , Amidines/pharmacology , Electron Spin Resonance Spectroscopy , Free Radicals/analysis , Lipid Peroxidation/drug effects , Malondialdehyde/analysis , Phosphatidylcholines/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry
2.
Rev. Inst. Med. Trop. Säo Paulo ; 53(4): 235-238, July.-Aug. 2011. graf
Article in English | LILACS | ID: lil-598607

ABSTRACT

Surfacen® is an exogenous natural lung surfactant, composed by phospholipids and hydrophobic proteins, which is applied successfully in Newborn Respiratory Distress Syndrome. In this paper, in vitro activity of Surfacen® against Leishmania amazonensis is described. The product showed activity against the amastigote form found in peritoneal macrophages from BALB/c mice, with an IC50 value of 17.9 ± 3.0 µg/mL; while no toxic effect on host cell was observed up to 200 µg/mL. This is the first report about the antileishmanial activity of Surfacen®.


Surfacen® es un surfactante natural exógeno extraído del pulmón, formado por fosfolípidos y proteínas hidrofóbicas, el cual es aplicado con éxito en el Síndrome de Distrés Respiratorio en Niños Recién Nacidos. En este trabajo, se describe la actividad in vitro del Surfacen® contra Leishmania amazonensis. El producto mostró actividad frente a amastigotes que se encuentran en macrófagos peritoneales de ratón BALB/c, con una CI50 de 17.9 ± 3.0 µg/mL, mientras no se observaron efectos tóxicos sobre la célula hospedera hasta 200 µg/mL. Este estudio constituye el primer reporte sobre la actividad antileishmania del Surfacen®.


Subject(s)
Animals , Mice , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Phospholipids/pharmacology , Pulmonary Surfactant-Associated Proteins/pharmacology , Mice, Inbred BALB C , Macrophages, Peritoneal/parasitology , Parasitic Sensitivity Tests , Pulmonary Surfactants/pharmacology
3.
Experimental & Molecular Medicine ; : 647-657, 2008.
Article in English | WPRIM | ID: wpr-59823

ABSTRACT

Curcumin (from the rhizome of Curcuma longa) is well documented for its medicinal properties in Indian and Chinese systems of medicine where it is widely used for the treatment of several diseases. Epidemiological observations are suggestive that curcumin consumption may reduce the risk of some form of cancers and provide other protective biological effects in humans. These biological properties have been attributed to curcuminoids that have been widely studied for their anti-inflammatory, anti-angiogenic, antioxidant, wound healing and anti-cancer effects. In this study we have investigated on the effect of a curcumin phospholipid complex on mammary epithelial cell viability. HC11 and BME-UV cell lines, validated models to study biology of normal, not tumoral, mammary epithelial cells, were used to analyse these effects. We report that curcumin acts on STAT-3 signal pathway to reduce cell viability and increase apoptosis evaluated by the the amount of activated caspase 3. Further it reduces MAPK and AKT activations. JSI-124, a STAT-3 inhibitor (100 nM) was able to block the negative effect of curcumin on cell viability and caspase 3 activation. Finally the negative effect of cucumin on cell viability has been impaired in STAT-3i HC11, where STAT-3 protein was greatly reduced by shRNA-interference. These results indicate that curcumin presents a potential adverse effect to normal mammary epithelial cells and that it has a specific effect on signal trasduction in mammary epithelium.


Subject(s)
Animals , Cattle , Mice , Apoptosis , Caspase 3/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Curcuma/chemistry , Curcumin/adverse effects , Enzyme Activation , Epithelial Cells/cytology , MAP Kinase Signaling System/physiology , Mammary Glands, Animal/cytology , Oncogene Protein v-akt/metabolism , Phospholipids/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects , Triterpenes/pharmacology
4.
Acta cir. bras ; 20(supl.1): 257-261, 2005.
Article in English | LILACS | ID: lil-414652

ABSTRACT

OBJETIVO: A anfotericina B é um agente antifúngico de largo espectro bastante empregado na terapia antifúngica. Entretanto, esta molécula apresenta um alto nível de toxicidade que, na maioria das vezes, impede o seu uso contínuo na terapêutica médica. O objetivo deste artigo foi comparar a eficácia e a toxicidade in vitro do Fungizon™ (AmB-D) e de dois sistemas carreadores de AmB. MÉTODOS: Três produtos foram avaliados: o Fungizon™ , e dois sistemas oriundos da mistura entre o Fungizon™ e o Lipofundin™ , uma emulsão de uso parenteral. Tais sistemas foram obtidos por duas técnicas: Na primeira diluiu-se previamanete o Fungizon™ com água para injetáveis e em seguida inseriu-se o Lipofundin™ (AmB-DAL); o segundo método consistiu na diluíção extemporânea do Fungizon™ com a referida emulsão (AmB-DL). Dois modelos celulares foram empregados no estudo: os eritrócitos (RBC) oriundos de doadores humanos e a Candida tropicalis (Ct). A avaliação in vitro (liberação de K+ e hemoglobina, e o índice de sobrevivência celular-CSR) foi realizado com quatro concentrações de AmB (entre 50 e 0.05mg.L-1). RESULTADOS: Os resultados demonstram que a ação da AmB não só foi dependente da concentração como também variou de acordo com o modelo celular e o veículo que diluiu o Fungizon™ . Nas concentrações de 50 mg.L-1, apesar da liberação de hemoglobina ser quase que total para AmB-D (99.51), para a AmB-DAL e AmB-DL este valor tendeu a zero. Um p = 0.000 demonstrou que AmB-D foi significativamente mais hemolítico. CONCLUSÃO: A mistura Fungizon™ -Lipofundin™ aparenta ser um bom sistema para carrear a AmB tendo em vista seu elevado índice terapêutico demonstrado.


Subject(s)
Female , Humans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , In Vitro Techniques , Parenteral Nutrition/standards , Phospholipids/pharmacology , Sorbitol/pharmacology , Analysis of Variance , Amphotericin B/adverse effects , Antifungal Agents/adverse effects , Candida tropicalis/drug effects , Drug Carriers , Drug Combinations , Erythrocytes/drug effects , Hemoglobins/drug effects , Models, Biological , Phospholipids/adverse effects , Potassium/blood , Sorbitol/adverse effects , Treatment Outcome
5.
Indian J Biochem Biophys ; 1992 Oct; 29(5): 438-41
Article in English | IMSEAR | ID: sea-27927

ABSTRACT

The synthesis and secretion of apoB, the major protein component of very low density lipoprotein (VLDL) and low density lipoprotein (LDL), were studied using rat hepatocytes maintained in primary culture. Supplementation of hepatocytes with rat serum VLDL and LDL increased the production of apoB while delipidated lipoproteins had no significant effect, suggesting a role for lipids in the production of apoB. Addition of cholesterol to the culture medium also increased the production of apoB in a concentration-dependent manner. Pulse labelling followed by chase in presence of cholesterol indicated enhancement in apoB secretion. Mevinolin which inhibits cholesterol synthesis significantly reduced the secretion of apoB. The presence of phosphatidylcholine and phosphatidylethanolamine in the culture medium also increased the secretion of apoB into the medium. These data suggest that availability of lipids, particularly cholesterol, is an important determinant of apoB synthesis and secretion as VLDL.


Subject(s)
Animals , Apolipoproteins B/biosynthesis , Cells, Cultured , Cholesterol/pharmacology , Kinetics , Lipoproteins, LDL/pharmacology , Lipoproteins, VLDL/biosynthesis , Liver/drug effects , Phospholipids/pharmacology , Rats , Rats, Sprague-Dawley
6.
Mem. Inst. Oswaldo Cruz ; 87(supl.3): 251-61, 1992. tab, ilus
Article in English | LILACS | ID: lil-121111

ABSTRACT

The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble


Subject(s)
Drug Design , Lipids , Malaria , Phospholipids/biosynthesis , Plasmodium , Phospholipids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL